10 x 112Gb/s PDM-QPSK transmission over 5032 km in few-mode fibers.

نویسندگان

  • Fatih Yaman
  • Neng Bai
  • Y K Huang
  • M F Huang
  • B Zhu
  • Ting Wang
  • Guifang Li
چکیده

Few-mode fibers (FMFs) are used for the first time to transmit over 5000 km. Ten WDM channels with 50GHz channel spacing at 112 Gb/s per channel using PDM-QPSK are launched into the fundamental mode of the FMFs by splicing single-mode fibers directly to the FMFs. Even though few-mode fibers can support an additional spatial mode LP(11) at 1550 nm, the signal remains in the fundamental mode and does not experience mode coupling throughout fiber transmission. After each span the signal is collected by a second single-mode fiber which is also spliced to the FMF. Span loss is compensated by single-mode EDFAs before it is launched to the next FMF span. The lack of mode coupling ensures that the signal does not suffer any impairments that may result from differential mode delay or excess loss. Therefore the FMFs used in this "single-mode operation" have the same bandwidth as single-mode fibers. Experimental results verified that FMFs have the significant advantage of large core size which reduces the nonlinear impairments suffered by the signal. It is shown that FMFs with an effective area of 130 μm(2), have an optimum launch power 2 dB higher compared to standard single-mode fibers and as a result a 1.1 dB improvement in the Q-factor is obtained after 3000 km.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fiber nonlinearity mitigation of WDM-PDM QPSK/16-QAM signals using fiber-optic parametric amplifiers based multiple optical phase conjugations.

We demonstrate fiber nonlinearity mitigation by using multiple optical phase conjugations (OPCs) in the WDM transmission systems of both 8 × 32-Gbaud PDM QPSK channels and 8 × 32-Gbaud PDM 16-QAM channels, showing improved performance over a single mid-span OPC and no OPC in terms of nonlinear threshold and a best achievable Q2 factor after transmission. In addition, after an even nu...

متن کامل

Mode-multiplexed transmission over conventional graded-index multimode fibers.

We present experimental results for combined mode-multiplexed and wavelength multiplexed transmission over conventional graded-index multimode fibers. We use mode-selective photonic lanterns as mode couplers to precisely excite a subset of the modes of the multimode fiber and additionally to compensate for the differential group delay between the excited modes. Spatial mode filters are added to...

متن کامل

Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer.

Mode division multiplexed optical transmission enabled by all-fiber mode multiplexer is investigated. The proposed all-fiber mode multiplexer is composed of consecutive mode selective couplers. It multiplexes or demultiplexes LP01, LP11, LP21, and LP02 modes simultaneously. We demonstrate successful transmission of three spatial modes with 120 Gb/s PDM-QPSK signals over 15 km of four mode fiber...

متن کامل

Mode- and wavelength-division multiplexed transmission using all-fiber mode multiplexer based on mode selective couplers.

We propose all-fiber mode multiplexer composed of two consecutive LP₁₁ mode selective couplers that allows for the multiplexing of LP₀₁ mode and two-fold degenerate LP₁₁ modes. We demonstrate WDM transmission of 32 wavelength channels with 100 GHz spacing, each carrying 3 modes of 120 Gb/s polarization division multiplexed quadrature phase shifted keying (PDM-QPSK) signal, over 560 km of few-mo...

متن کامل

Transmission and reception of quad-carrier QPSK-OFDM signal with blind equalization and overhead-free operation

Quad-Carrier Quadrature Phase Shift Keyed orthogonal frequency division multiplexing (QPSK-OFDM) signal transmission and reception is successfully demonstrated with blind equalization like a 25-ary quadrature amplitude modulation (25-QAM) signal with cascaded multimodulus algorithm (CMMA) equalization. The phase recovery can be realized with simple Viterbi algorithm and the frequency offset est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 18 20  شماره 

صفحات  -

تاریخ انتشار 2010